

Methods to predict fatigue in CubeSat structures and mechanisms

By Walter Holemans (PSC), Floyd Azure (PSC) and Ryan Hevner (PSC)

08-09 August 2015 12th Annual Summer CubeSat Developers' Workshop

- Problem Statement
- What is fatigue?
- Cyclic loading and strength
- What is sensitive?
- Steps 1-8
- What is preload?
- Summary

Problem Statement

- Why do CubeSats fail 30 to 50 percent of the time?
- One failure mode may be fatigue failure

- Fatigue is the process of damage and failure due to cyclic loading
- Cyclic loading may come from:
 - Oscillating acceleration like random vibration and shock
 - Oscillating thermal loading from orbital period or heating cooling cycles of components turned OFF and ON
 - Pressure and vacuum cycling
 - Humidity cycling
 - Assembly cycles

"The results of this study show that the pins failed as a result of fatigue loading."

Source: Failure Analysis of Electrical Pin

(b) Photograph of broken electrical connector pins

Figure 1. Photographs of failed electrical connector pins. Connectors, NASA/TM-2008-215531, October 2008 [Mars Science Laboratory]

08-09 August 2015 12th Annual Summer CubeSat Developers' Workshop

(a) Photograph of processing chip on circuit board

Methods to predict fatigue in CubeSat structures and mechanisms

www.planetarysystemscorp.com

Cyclic loading reduces material strength by about 50 percent

• Typical Stress Versus Life (S-N) Curve

Fatigue Life, Cycles

Figure 3.6.2.2.8. Best-fit S/N curves for unnotched 6061-T6 aluminum alloy, various wrought products, longitudinal direction. Source: Battelle-MMPDS Metallic Materials Properties Development and Standardization

Page 6

• All solid state materials of any size

Step 1: Build Finite Element Model (FEM) of CubeSat

Step 2: Join CubeSat FEM to Dispenser FEM

- Compared the response of each component to the base input. Peak values were:
 - Base input [g] = 1.01
 - Battery A [g] = 1.01
 - Bottom PCB [g] = 1.00

• The base of the Dispenser (not shown) is fixed

Step 5: Identify Elements with high stress or strain

A Microcontroller's pins may be modelled

Also see Solomon, H. D. et. al. Prediction of Solder Joint Fatigue Life, Air Force Wright Aeronautical Laboratories, April 1988

Step 6: Random Vibration Analysis

- The input vibration is at the base of the dispenser
- Are the responses exceeding specification?
 - Example: Is Battery A being exposed to random vibration (cyclic loading) in excess of its specification?

- Using the Rms stress from **Step 6**, and assume a full stress reversal
- Use Miner's Rule to compute **Fatigue damage ratio.**
 - Values less than 1.0 are indicate no fatigue failure

	Inner Standoff	Cross Beam	Inner Base Standoff	Outer Base Standoff
Resonant Frequency [Hz]	329	329	1,295	1,296
Duration [sec]	120	120	120	120
Trials [-]	1	1	1	1
Total Duration [sec]	120	120	120	120
Duration Cycle [sec]	0.0030	0.0030	0.0008	0.0008
Total Cycles [-]	39,480	39,480	155,400	155,520
Stress (1-sigma) [psi]	1,309	2,013	261	163
Stress (2-sigma) [psi]	2,619	4,026	522	326
Stress (3-sigma) [psi]	3,928	6,040	782	488
Time Stress Occurs (1-sigma) [-]	68.3%	68.3%	68.3%	68.3%
Time Stress Occurs (2-sigma) [-]	27.2%	27.2%	27.2%	27.2%
Time Stress Occurs (3-sigma) [-]	4.3%	4.3%	4.3%	4.3%
Number of Cycles (1-sigma) [-]	26,953	26,953	26,953	26,953
Number of Cycles (2-sigma) [-]	10,731	10,731	10,731	10,731
Number of Cycles (3-sigma) [-]	1,690	1,690	1,690	1,690
Fatigue Limit (1-sigma) [-]	1.00E+08	1.00E+08	1.00E+08	1.00E+08
Fatigue Limit (2-sigma) [-]	1.00E+08	1.00E+08	1.00E+08	1.00E+08
Fatigue Limit (3-sigma) [-]	1.00E+08	1.00E+08	1.00E+08	1.00E+08
Fatigue Damage Ratio [-]	3.94E-04	3.94E-04	3.94E-04	3.94E-04

 In the actual test, response accelerometers are used to correlate the FEM

PLANETARY

CORPORATION

SYSTEMS

- Damping and stiffness are modified in the FEM to best mimic test response
- If pre and post sine sweeps are substantially different, fracture may have occurred changing the load path and so changing the response frequency and amplitude
- A fractured electrical junction may not be detected until thermal or operations testing
 - At temperature extremes, an already cracked circuit element may OPEN as the materials contract
 - So it is valuable to follow vibration testing with thermal vacuum testing

If the load path changed because of fatigue, one would see a change in frequency or amplitude

- A compressive load to join parts wherein the compressive load is greater than external load
 - Because the junction does not slip it behaves as if it were welded together
- Examples of preloaded junctions
 - Tightened bolts holding a wheel to a car
 - Tightened C-clamp holding two pieces of wood together
 - Straps holding cargo inside a plane
- Examples of un-preloaded junctions
 - Untightened bolts holding a wheel to a car
 - The wheels will jiggle and wreck the bolts. Then the wheel will fall off.
 - Untightened C-clamp holding two pieces of wood together
 - One piece of wood will slip away
 - Cargo moving around the inside of a plane

Fatigue cannot be predicted with unpreloaded CubeSats

- In un-preloaded CubeSats, response changes with applied load and time
 - Very non-linear = impractical to usefully model
 - So model correlation is impractical as well
 - Non-linearities are (also) consistent with fatigue!
 - So CubeSats may have suffered a fatigue failure, but engineers can't tell...

Source: Furger, S. Development of Random Vibration Profiles for Test Deployers to Simulate the Dynamic Environment in the Poly-Picosatellite Orbital Deployer, California Polytechnic, San Luis Obispo, 2013

- Analysis can be used to predict fatigue life allowing engineers to avoid failure modes associated with fatigue and focus on predicted weaknesses
- Un-preloaded CubeSats cannot be practically analyzed for fatigue life
 - Un-preloaded (jiggling) Cubesats may be masking useful data about fatigue failure

Thank You

• Questions?